How do you prove ##cos2x=cos^2x-sin^2## using other trigonometric identities?
February 20th, 2023
Apply the angle-sum identity for cosine to ##cos(x+x)##.
The identity needed is the angle-sum identity for cosine.
##cos(alpha + beta) = cos(alpha)cos(beta) – sin(alpha)sin(beta)##
With that, we have
##cos(2x) = cos(x + x)##
##= cos(x)cos(x) – sin(x)sin(x)##
##= cos^2(x) – sin^2(x)##