Exercise 1: Rectilinear Motion

Exercise 1: Rectilinear MotionThe first part of this week’s assignment is to choose and research a turbine powered (i.e. jet type) aircraft. You will further use your selected aircraft in subsequent assignments, so be specific and make sure to stay relatively conventional with your choice in order to prevent having trouble finding the required data during your later research. Also, if you find multiple numbers (e.g. for different aircraft series, different configurations, and/or different operating conditions), please pick only one for your further work, but make sure to detail your choice in your answer (i.e. comment on the condition) and stay consistent with that choice throughout subsequent work. In contrast to formal research for other work in your academic program at ERAU, Wikipedia may be used as a starting point for this assignment. However, DO NOT USE PROPRIETARY OR CLASSIFIED INFORMATION even if you happen to have access in your line of work.Keep in mind that any theoretical solution to a complex, unique real world problem is based on models and generalizations, requiring certain assumptions and simplifications, and comes with a variety of limitations as to its applicability. Therefore, detailing conditions and selections is a fundamental part of a scientifically sound approach and documentation of your solution to the problems.1. Selected Aircraft:2. Maximum Takeoff Weight (MTOW) [lbs]:3. Engine Type and Rated Thrust [lbs]:4. Total Available Thrust (sum of all engines for multiengine aircraft) [lbs]:5. Maximum Rate of Climb [ft/min]:6. Take-off distance at MTOW [ft]:Uniformly Accelerated Rectilinear Motion and Newton’s Law of MomentumEquations:             F = ma                                                m = W/gVF 2 = VI 2 + 2 a s                               g = 32.2 ft/sec2VF = VI  + a t                                       Takeoff distance (s) = VF 2 /2aKE = ½ mV2PE = WhHP= T*Vkts /325                                 sin(γ) = (ROCkts)/(Vkts)1 kt = 1.69 ft/sec                                Remember to keep track of units, convert as required, and express answers in the requested unit. (Keep in mind that the initial velocity VI for takeoff is zero since we start from a standstill).A. Using your researched data, compute the acceleration on the aircraft during the takeoff roll. [ft/sec2] (Keepin mind that weight is not the same as mass.)B. If your aircraft lifted off the ground at 150kts, what would be the length of the takeoff run? [ft](Watch for unit conversions.)C. How much time would it take until liftoff once the takeoff roll is started? [s](You will have to algebraically solve the given formula for time ‘t’ first.)D.  Determine how fast the airplane should be going when it passes the 1000-foot runway marker (1000 feet from the start of the takeoff roll)? [kts].(Apply the distance formula as you would for the takeoff run in Question B; however, the distance ‘s’ is now known to be 1000ft and the unknown is the velocity ‘V’. Solve algebraically for ‘V’. Don’t forget that results will have to be converted into kts.)Similar to detailing assumptions and conditions at the onset, any quantitative result of our theoretical work also requires a qualitative discussion of applicability. The important question to discuss is how accurate our result will depict the real world. Possible errors should be identified, our certainty about results evaluated, and additional recommendations for further improvement provided.Therefore, comment on your findings in Questions A through D. Compare your calculated takeoff distance in B with your research in Question 6. What elements did we neglect in the acceleration computed in Question A? How did it affect our further work in B through D?        (see & compare also formula given above with the calculation examples within the module)E. What is the power [HP] of the aircraft engines after takeoff at the total available thrust (from Question 4) if flying at 200kts? (Remember, this formula already has unit conversions included)F.  What is the Kinetic Energy [ft-lb] of the aircraft at 200kts and Maximum Takeoff Weight (from Question 2)?G.  What is the Potential Energy [ft-lb] of the aircraft after climbing out to 10,000ft above sea level at Maximum Takeoff Weight (from Question 2)?H. What is the Angle of Climb [deg] for the airplane at 200kts at the maximum rate of climb from Question 5? (Make sure to use vertical speed, i.e. ROC, and horizontal speed, i.e. flight speed, in the same unit and pay attention to your calculator settings for trigonometric functions.)Similar to your discussion for questions A through D, comment on your E through H results. How realistic do you think energies in question F & G were calculated? Which assumption in those questions most probably would have changed in a real flight and how would it have affected results?

Save Time On Research and Writing
Hire a Pro to Write You a 100% Plagiarism-Free Paper.
Get My Paper
Calculate the price
Make an order in advance and get the best price
Pages (550 words)
$0.00
*Price with a welcome 15% discount applied.
Pro tip: If you want to save more money and pay the lowest price, you need to set a more extended deadline.
We know how difficult it is to be a student these days. That's why our prices are one of the most affordable on the market, and there are no hidden fees.

Instead, we offer bonuses, discounts, and free services to make your experience outstanding.
How it works
Receive a 100% original paper that will pass Turnitin from a top essay writing service
step 1
Upload your instructions
Fill out the order form and provide paper details. You can even attach screenshots or add additional instructions later. If something is not clear or missing, the writer will contact you for clarification.
Pro service tips
How to get the most out of your experience with Homework Mules
One writer throughout the entire course
If you like the writer, you can hire them again. Just copy & paste their ID on the order form ("Preferred Writer's ID" field). This way, your vocabulary will be uniform, and the writer will be aware of your needs.
The same paper from different writers
You can order essay or any other work from two different writers to choose the best one or give another version to a friend. This can be done through the add-on "Same paper from another writer."
Copy of sources used by the writer
Our college essay writers work with ScienceDirect and other databases. They can send you articles or materials used in PDF or through screenshots. Just tick the "Copy of sources" field on the order form.
Testimonials
See why 20k+ students have chosen us as their sole writing assistance provider
Check out the latest reviews and opinions submitted by real customers worldwide and make an informed decision.
Business Studies
Great paper thanks!
Customer 452543, January 23rd, 2023
Political science
I like the way it is organized, summarizes the main point, and compare the two articles. Thank you!
Customer 452701, February 12th, 2023
Psychology
I requested a revision and it was returned in less than 24 hours. Great job!
Customer 452467, November 15th, 2020
Technology
Thank you for your work
Customer 452551, October 22nd, 2021
Finance
Thank you very much!! I should definitely pass my class now. I appreciate you!!
Customer 452591, June 18th, 2022
Psychology
Thank you. I will forward critique once I receive it.
Customer 452467, July 25th, 2020
Education
Thank you so much, Reaserch writer. you are so helpfull. I appreciate all the hard works. See you.
Customer 452701, February 12th, 2023
Political science
Thank you!
Customer 452701, February 12th, 2023
Accounting
Thank you for your help. I made a few minor adjustments to the paper but overall it was good.
Customer 452591, November 11th, 2021
11,595
Customer reviews in total
96%
Current satisfaction rate
3 pages
Average paper length
37%
Customers referred by a friend
OUR GIFT TO YOU
15% OFF your first order
Use a coupon FIRST15 and enjoy expert help with any task at the most affordable price.
Claim my 15% OFF Order in Chat
Show more
<
Live Chat 1 7633094299EmailWhatsApp

Order your essay today and save 15% with the discount code WELCOME