How do you integrate ##int ( (x^2) / (sqrt(4 – x^2)) ) dx##?
February 20th, 2023
Let ##x=2sintheta## so that ##sqrt(4-x^2)=2costheta## and ##dx=2costhetad theta##.
Hence
##intx^2/sqrt(4-x^2)dx##
##=int(4sin^2theta)/(2costheta)(2costhetad theta)##
##=4intsin^2thetad theta##
Since ##cos2theta=1-2sin^2theta## and ##sin2theta=2sinthetacostheta##.
##4intsin^2thetad theta##
##=4int(1-cos2theta)/2d theta##
##=2intd theta-2intcos2thetad theta##
##=2theta-sin2theta+C##
##=2theta-2sinthetacostheta+C##
##=2arcsin(x/2)-1/2xsqrt(4-x^2)+C##
Hence
##intx^2/sqrt(4-x^2)dx=2arcsin(x/2)-1/2xsqrt(4-x^2)+C##